Семинарское занятие 5 (MATLAB)
Тема: kNN-классификатор, выбор k, анализ ошибок (confusion matrix + разбор ошибок).
Цель занятия
1) Обучить kNN-классификатор и понять влияние параметра k.
2) Подобрать k с помощью cross-validation (CV).
3) Оценить качество на тестовой выборке и выполнить анализ ошибок (какие классы путаются и почему).
Входные данные (датасет)
Выберите один вариант:
A) Встроенный датасет Iris (3 класса) — удобно для визуализации и анализа.
B) Свой CSV/Excel (2–5 классов). В этом случае в отчёте объясните смысл классов и признаки.
Задание (что нужно сделать)
1. Загрузить данные, выделить X (признаки) и y (метки классов). Показать размерность N×d и количество объектов в каждом классе.
2. Сделать нормализацию признаков (z-score) ТОЛЬКО по обучающей выборке и применить те же параметры к val/test (без утечки данных).
3. Разделить данные на train/val/test (например, 60/20/20) со стратификацией и фиксированным seed.
4. Обучить kNN для набора значений k (например, k = 1…30) и сравнить качество на validation (accuracy/F1).
5. Выбрать лучшее k по CV (например, 5-fold на train) или по validation-критерию; объяснить выбор.
6. Переобучить модель на train+val с выбранным k и оценить на test: confusion matrix, accuracy, precision, recall, F1 (macro).
7. Сделать анализ ошибок: какие классы чаще путаются (по confusion matrix), привести 3–5 примеров ошибок (индексы/значения признаков).
8. Короткий вывод (5–8 строк): почему ошибки возникают (перекрытие классов, масштаб признаков, шум).
Что сдавать
1) MATLAB-скрипт: Seminar5_kNN_SelectK_ErrorAnalysis.m
2) Отчёт 1–2 страницы (PDF/Word): график accuracy vs k, выбранное k, confusion matrix на test, таблица метрик, анализ ошибок.
3) (Опционально) файл .mat с сохранённой моделью и результатами.
Критерии оценивания (макс. 15 баллов)
• Корректная подготовка данных + нормализация без утечки — 4 б.
• Подбор k (график/таблица + аргументация) — 4 б.
• Тестовая оценка (confusion matrix + метрики) — 4 б.
• Анализ ошибок (путаемые классы + примеры) — 3 б.
Бонус +2 б: сравнить разные метрики расстояния (euclidean vs cityblock) и/или weighted kNN.
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 5: kNN, выбор k, анализ ошибок
rng(42);

%% 1) Данные (вариант A: Iris)
load fisheriris
X = meas; % 150x4
y = categorical(species); % 150x1

% Если у вас свой датасет:
% T = readtable("data.csv");
% y = categorical(T.Label);
% X = table2array(T(:, setdiff(T.Properties.VariableNames, {'Label'})));

%% 2) Train/Val/Test split 60/20/20 со стратификацией
cv1 = cvpartition(y,'Holdout',0.4); % 60% train, 40% temp
idxTr = training(cv1);
idxTmp = test(cv1);

Xtr = X(idxTr,:); ytr = y(idxTr);
Xtmp = X(idxTmp,:); ytmp = y(idxTmp);

cv2 = cvpartition(ytmp,'Holdout',0.5); % 20% val, 20% test
idxVal = training(cv2);
idxTe = test(cv2);

Xval = Xtmp(idxVal,:); yval = ytmp(idxVal);
Xte = Xtmp(idxTe,:); yte = ytmp(idxTe);

%% 3) Нормализация (z-score) БЕЗ утечки: считаем по TRAIN
mu = mean(Xtr, 1);
sigma = std(Xtr, 0, 1);
sigma(sigma==0) = 1;

XtrN = (Xtr - mu) ./ sigma;
XvalN = (Xval - mu) ./ sigma;
XteN = (Xte - mu) ./ sigma;

%% 4) Подбор k: (A) по validation (k=1..30)
kList = 1:30;
valAcc = zeros(size(kList));
valMacroF1 = zeros(size(kList));

for i = 1:numel(kList)
 k = kList(i);
 mdl = fitcknn(XtrN, ytr, 'NumNeighbors', k, 'Distance','euclidean');
 yhat = predict(mdl, XvalN);
 valAcc(i) = mean(yhat == yval);
 valMacroF1(i) = macroF1(yval, yhat);
end

figure; plot(kList, valAcc, '-o'); grid on;
xlabel('k'); ylabel('Validation Accuracy'); title('kNN: Accuracy vs k (Validation)');

figure; plot(kList, valMacroF1, '-o'); grid on;
xlabel('k'); ylabel('Validation Macro-F1'); title('kNN: Macro-F1 vs k (Validation)');

% Выбираем k по максимуму Macro-F1 (можно по Accuracy)
[~, bestIdx] = max(valMacroF1);
bestK_val = kList(bestIdx);
fprintf('Best k by Validation Macro-F1 = %d (Macro-F1=%.3f)\n', bestK_val, valMacroF1(bestIdx));

%% 5) Подбор k: (B) 5-fold CV на TRAIN (честнее)
% Вычислим k-fold loss для каждого k и выберем минимум
kfoldLosses = zeros(size(kList));
for i = 1:numel(kList)
 mdl = fitcknn(XtrN, ytr, 'NumNeighbors', kList(i), 'Distance','euclidean');
 cvMdl = crossval(mdl, 'KFold', 5);
 kfoldLosses(i) = kfoldLoss(cvMdl); % 0-1 loss
end

figure; plot(kList, kfoldLosses, '-o'); grid on;
xlabel('k'); ylabel('5-fold CV Loss'); title('kNN: 5-fold CV Loss vs k');

[~, bestIdx2] = min(kfoldLosses);
bestK_cv = kList(bestIdx2);
fprintf('Best k by 5-fold CV Loss = %d (Loss=%.3f)\n', bestK_cv, kfoldLosses(bestIdx2));

%% 6) Финальная модель: обучаем на Train+Val с выбранным k
% Выберите bestK = bestK_cv (рекомендуется) или bestK_val
bestK = bestK_cv;

XtrainAll = [Xtr; Xval];
ytrainAll = [ytr; yval];

% Нормализация должна быть пересчитана по Train+Val (опционально)
mu2 = mean(XtrainAll, 1);
sigma2 = std(XtrainAll, 0, 1); sigma2(sigma2==0) = 1;
XtrainAllN = (XtrainAll - mu2) ./ sigma2;
XteN2 = (Xte - mu2) ./ sigma2;

mdlFinal = fitcknn(XtrainAllN, ytrainAll, 'NumNeighbors', bestK, 'Distance','euclidean');

%% 7) Оценка на TEST
yhatTe = predict(mdlFinal, XteN2);

CM = confusionmat(yte, yhatTe);
disp('Confusion Matrix (Test):'); disp(CM);

figure; confusionchart(yte, yhatTe);
title(sprintf('kNN (k=%d): Confusion Matrix (Test)', bestK));

acc = mean(yhatTe == yte);
macro_f1 = macroF1(yte, yhatTe);
fprintf('Test Accuracy = %.3f | Test Macro-F1 = %.3f\n', acc, macro_f1);

%% 8) Анализ ошибок: какие объекты классифицированы неверно
wrongIdx = find(yhatTe ~= yte);
fprintf('Misclassified samples: %d of %d\n', numel(wrongIdx), numel(yte));

% Показать 5 первых ошибок: истинный класс, предсказанный класс, признаки
nShow = min(5, numel(wrongIdx));
disp('First misclassifications (index in TEST set):');
for i = 1:nShow
 ii = wrongIdx(i);
 fprintf('#%d true=%s pred=%s X=%s\n', ii, string(yte(ii)), string(yhatTe(ii)), mat2str(Xte(ii,:),3));
end

%% ===== Вспомогательная функция: Macro-F1 =====
function mf1 = macroF1(yTrue, yPred)
classes = categories(yTrue);
K = numel(classes);
f1s = nan(K,1);
for k = 1:K
 c = categorical(classes{k});
 TP = sum((yTrue==c) & (yPred==c));
 FP = sum((yTrue~=c) & (yPred==c));
 FN = sum((yTrue==c) & (yPred~=c));
 prec = TP / max(TP+FP, 1);
 rec = TP / max(TP+FN, 1);
 f1s(k) = 2*prec*rec / max(prec+rec, 1e-12);
end
mf1 = mean(f1s, 'omitnan');
end

Примечания и подсказки
• При больших размерностях kNN чувствителен к “проклятию размерности”: попробуйте PCA перед kNN (бонус).
• Попробуйте weighted kNN: fitcknn(..., "DistanceWeight","inverse") и сравните.
• В отчёте обязательно укажите: выбранное k, график качества vs k, какие классы путаются чаще всего.
